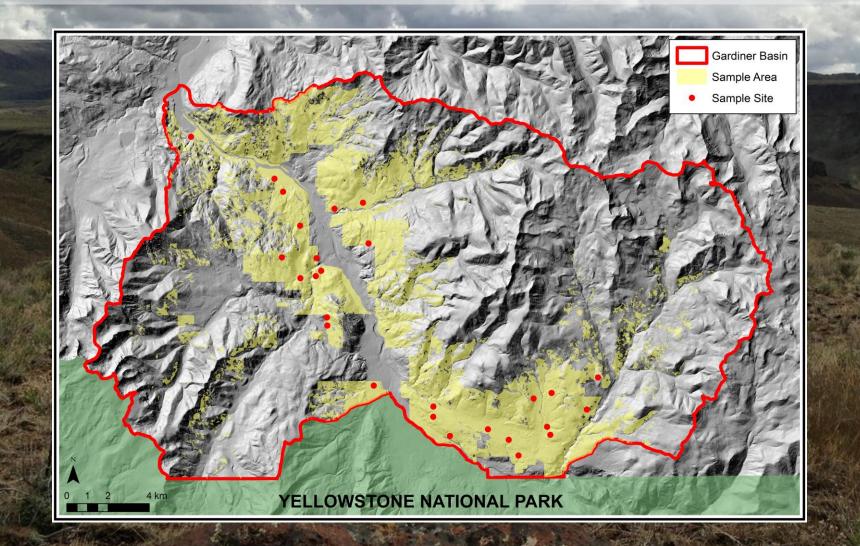
Ecosystem Resiliency Measures in the Gardiner Basin

Clayton B. Marlow Montana State University

2015 - Project Goal and Objectives


• Goals

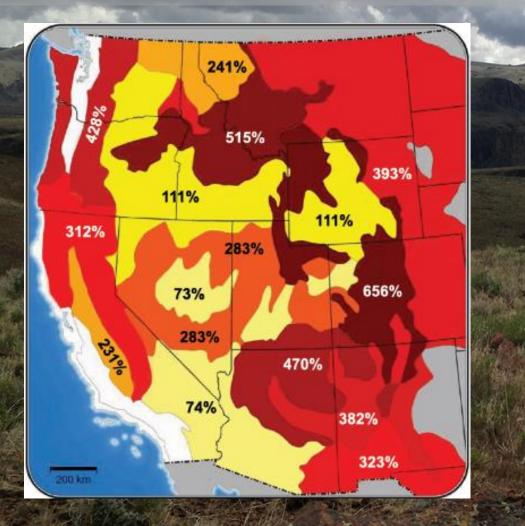
- Develop ecological baseline for Forest Service lands north of YNP
- Becomes basis for monitoring grassland communities as dominant grazer shifts from elk to bison

• The Purpose of Monitoring

- Accomplishment of management goals or revise existing strategies
- Historically most monitoring addressed response of vegetation to grazing pressure

2015 Field Survey

Ecosystem Measurements



Ecosystem Resiliency

capacity to recover following disturbance

Increasingly important under changing climate

• Can current systems recover in face of projected increase in occurrence and severity of wildfire??

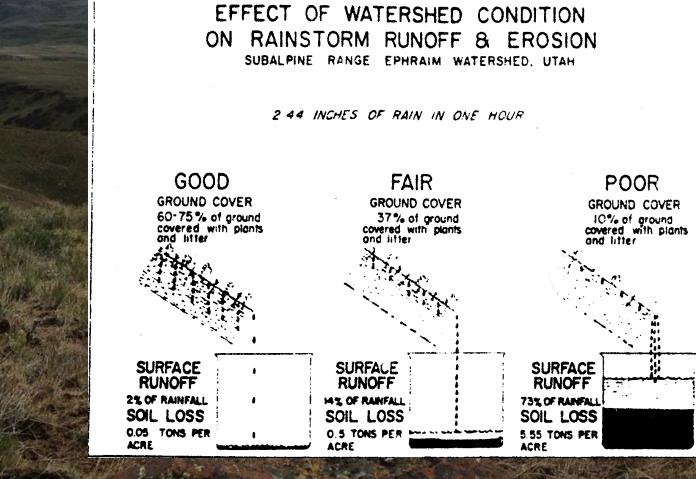
- Likely if critical processes remain intact
- Basis for system resiliency
 - Soil health
 - Watershed condition

Critical Processes

Soil Health

- infiltration
- runoff
- water storage
- carbon storage

Watershed


- Discharge
- Flow duration
- Sediment load

Vegetation Community Composition

• Contributes to ecosystem resiliency through:

- Building and maintaining soils
 - Addition of organic matter (roots and litter) makes soils more stable
 - Stable soil aggregates increase water infiltration
- Control of infiltration rates and therefore runoff
 - Vegetation cover limits soil crusting (maintains infiltration)
 - High infiltration rates = less runoff
 - Lower runoff = less sediment delivery to streams and rivers

Vegetation cover is link between soil health and watershed condition

Watershed Condition in the Gardiner Basin

	200		
Copy	1		
F. D.		No.	

Geology	4-15%	15-35%	35-60%
unconsol	34	45	73
bedrock	32	46	33

Likely Erosion Rate

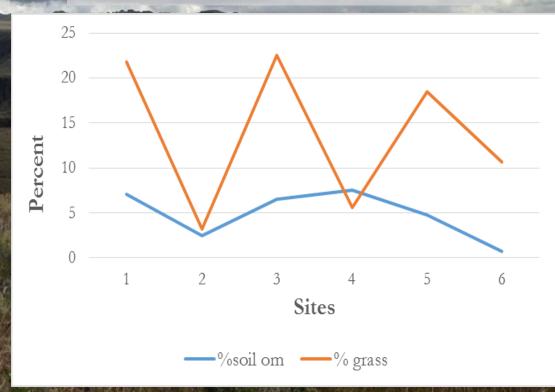
Low	Mod	high
25	63	90

Dominant Species (NE Aspect)

Species	4-15%		15-35%		35-60%	
Sagebrush	8	15	0	6		10
Idaho fescue	<1	4	0	1		5
Junegrass	2	2	4	3		0.5
Indian Ricegrass	<1	0	<1	0		<1
Sandberg bluegrass	2.5	3	3	3		<1
Bluebunch wheatgrass	2	5	5	5		6
Needleandthread	2	6	1	2		<1

What does grassland composition say about Gardiner Basin resiliency?

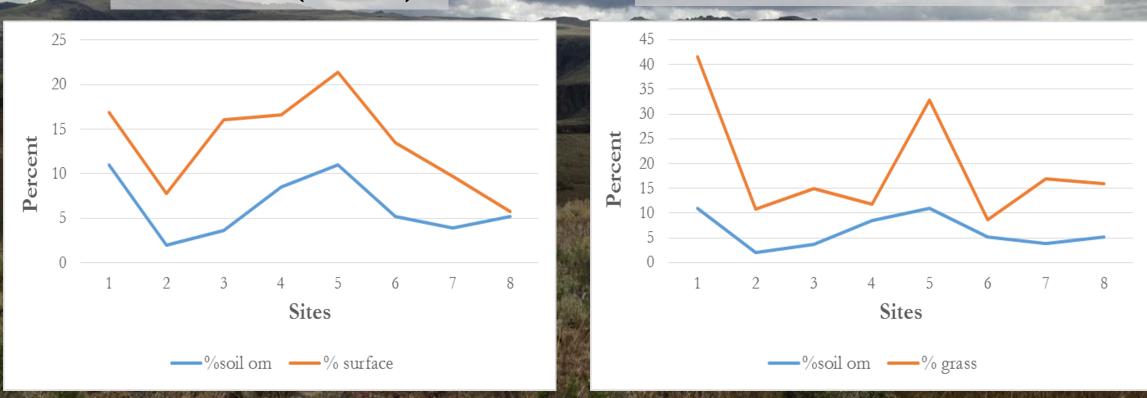
- Slope, aspect and geology strongly affect plant community dominants
- Sagebrush more common on 15%+ slopes
- Idaho Fescue most abundant on NE aspects
- Bluebunch wheatgrass most abundant on 15 35% slopes
- Needleandthread grass most abundant on 4 15% slopes


Reference	Percent	4 —	15%	15 —	35%	35 —	60%
Sagebrush	18	28	34	2**	29	46	21
Other woodies	2	2	2	0.2	7	0	2
Climax grasses	45	32	36	57*	27	46*	36
Perennial grasses	12	23*	15	33*	20*	8	17
Forbs	23	14	13	8	17	0	24

4 – 15% Slopes

Residual (Litter)

Perennial Grass Cover


P = 0.40, Adj Rsqu = - 0.03

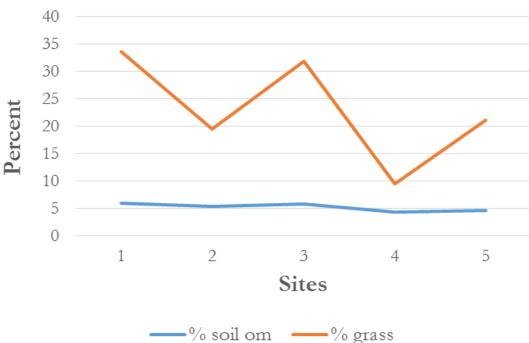
P = 0.18, Adj Rsq = 0.18

15 – 35% Slope

Residual (Litter)

Perennial Grass Cover

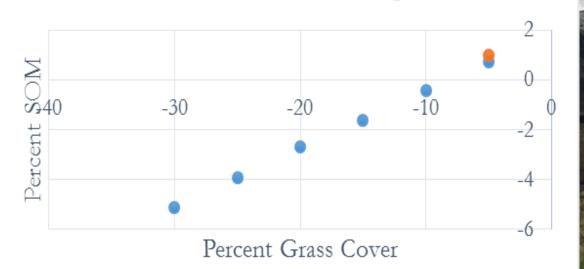
P = 0.03, Adj Rsqu = 0.48

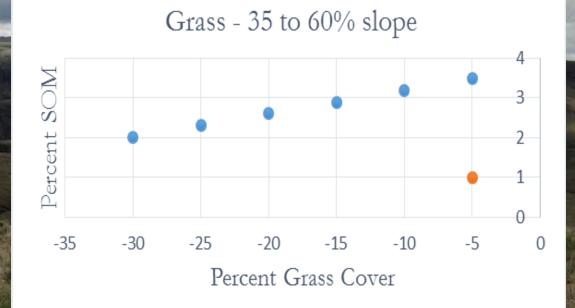

P = 0.02; Adj Rsqu = 0.55

35 – 60% Slope

Residual (Litter)

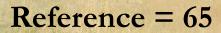
Perennial Grass Cover




P = 0.60, Adj Rsqu = -0.2

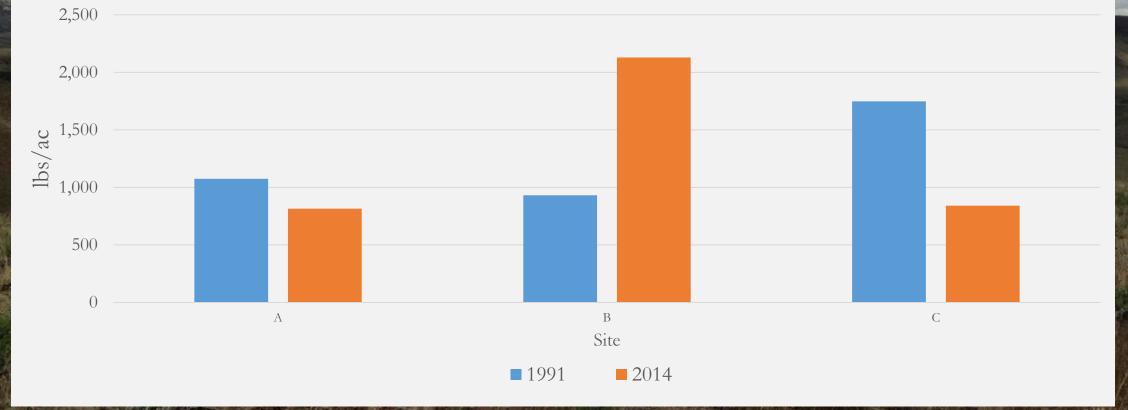
P = 0.02, Adj Rsqu = 0.78

Simple Model Outcomes


Grass - 15 to 35% slope

Depending on slope there is a 0.3 to 1.2% loss of SOM with each 5% reduction in grass cover

Another Measure of Resiliency


• Species Richness

• Higher number suggests greater likelihood of recover following disturbance

slope	4-15%	15-35%	35-60%
uncon	10 (8-12)	7 (6-8)	7
bedrock	11 (7-13)	11 (7-19)	13 (7-19)

Supportive Evidence

Above ground biomass

Monitoring Ecosystem Resiliency

• 2015 Soil and Vegetation Baseline

- Vegetation cover limits erosion and runoff
 - cover currently 35 70% (approaching threshold)
 - Long term monitoring indicates substantial decline in cover
- Soil health tied to perennial grass cover
 - As cover declines soil health declines
- Species richness (forb component) very low (low resiliency)
- Sample adequacy
 - 28 sites (9 64)

Questions??

